Pigeon superstition

Extracts from: Understanding Machine Learning by Shai Shalev-Shwartz.

“In an experiment performed by the psychologist B. F. Skinner, he placed a bunch of hungry pigeons in a cage. An automatic mechanism had been attached to the cage, delivering food to the pigeons at regular intervals with no reference whatsoever to the birds’ behavior. The hungry pigeons went around the cage, and when food was first delivered, it found each pigeon engaged in some activity (pecking, turning the head, etc.).

The arrival of food reinforced each bird’s specific action, and consequently, each bird tended to spend some more time doing that very same action. That, in turn, increased the chance that the next random food delivery would find each bird engaged in that activity again. What results is a chain of events that reinforces the pigeons’ association of the delivery of the food with whatever chance actions they had been performing when it was first delivered. They subsequently continue to perform these same actions diligently.”

This is an example of overfitting. The learning process of pigeons fits the noise, rather than the signal. There are two ways to avoid overfitting: accumulate more data while varying potential sources of noise to better see the signal, or use prior-knowledge about the task to introduce bias. Let’s see how rats learn.

Rats learn with built-in bias

“When rats encounter food items with novel look or smell, they will first eat very small amounts, and subsequent feeding will depend on the flavor of the food and its physiological effect. If the food produces an ill effect, the novel food will often be associated with the illness, and subsequently, the rats will not eat it. Clearly, there is a learning mechanism in play here – the animal used past experience with some food to acquire expertise in detecting the safety of this food. If past experience with the food was negatively labeled, the animal predicts that it will also have a negative effect when encountered in the future.

But rats turns out to be more complex than what one may expect. In experiments carried out by Garcia (Garcia & Koelling 1996), it was demonstrated that if the unpleasant stimulus that follows food consumption is replaced by, say, electrical shock (rather than nausea), then no conditioning occurs. Even after repeated trials in which the consumption of some food is followed by the administration of unpleasant electrical shock, the rats do not tend to avoid that food. Similar failure of conditioning occurs when the characteristic of the food that implies nausea (such as taste or smell) is replaced by a vocal signal. The rats seem to have some “built in” prior knowledge telling them that, while temporal correlation between food and nausea can be causal, it is unlikely that there would be a causal relationship between food consumption and electrical shocks or between sounds and nausea.”

“We conclude that one distinguishing feature between the bait shyness learning and the pigeon superstition is the incorporation of prior knowledge that biases the learning mechanism. This is also referred to as inductive bias. The pigeons in the experiment are willing to adopt any explanation for the occurrence of food. However, the rats “know” that food cannot cause an electric shock and that the co-occurrence of noise with some food is not likely to affect the nutritional value of that food. The rats’ learning process is biased toward detecting some kind of patterns while ignoring other temporal correlations between events.

Roughly speaking, the stronger the prior knowledge (or prior assumptions) that one starts the learning process with, the easier it is to learn from further examples. However, the stronger these prior assumptions are, the less flexible the learning is – it is bound, a priori, by the commitment to these assumptions.”